DEPARTMENT OF MECHANICAL ENGINEERING 15UME504 - OPERATIONS RESEARCH
 PERIODICAL TEST - 1

Last Date of Submission: 01.10.2020

1. A firm produces three products. These products are processed on three different machines. The time required to manufacture one unit of each of the three products and daily capacity of the three machines are given in the table below:

Machine	Time per unit (minutes)			Machine capacity (min/day)
	Product 1	Product 2	Product 3	
M1	2	3	2	440
M2	4	--	3	470
M3	2	5	--	430

It is required to determine the number of units to be manufactured for each product daily. The profit per unit for product 1, 2 and 3 is Rs.4, Rs. 3 and Rs. 6 respectively. It is assumed that all the amounts produced are consumed in the market. Formulate the mathematical for the problem.
(Apply) (5 marks)
2. Use Graphical method to solve the following LP problem to

Maximize $\mathrm{Z}=5 \mathrm{X}_{1}+8 \mathrm{X}_{2}$
Subject to $\quad 15 \mathrm{X}_{1}+10 \mathrm{X}_{2} \leq 180 \quad 10 \mathrm{X}_{1}+20 \mathrm{X}_{2} \leq 200 \quad 15 \mathrm{X}_{1}+20 \mathrm{X}_{2} \leq 210$

$$
X_{1}, X_{2} \geq 0
$$

(Analyze) (15 marks)
3. Find the basic feasible solution for the following transportation problem using
i) North-West Corner Rule
ii) Least Cost Method
iii) Vogel's Approximation method.

And compare with optimal solution result by Modi method
(Analyze) (15 marks)
4. The processing times in hours for the jobs when allocated to the different machines are indicated below. Assign the machines for the jobs so that the total processing time is minimum.

Machines

Jobs		I	II	III	IV	V
	1	11	17	8	16	20
	2	9	7	12	6	15
	3	13	16	15	12	16
	4	21	24	17	28	26
	5	14	10	12	11	15

DEPARTMENT OF MECHANICAL ENGINEERING

1. A paper mill produces 2 grades of paper namely X and Y. Because of raw material restrictions, it cannot produce more than 400 tonnes of grade X and 300 tonnes of grade Y in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 hours to produce a ton of products X and Y respectively with corresponding profits of Rs. 200 and Rs. 500 per ton. Formulate the above as a LPP to maximize profit.
(Apply) (5 marks)
2. Use Simplex method to solve the following LP problem to
(Analyze) (15 marks)
Maximize $Z=6 X_{1}+5 X_{2}$
Subject to

$$
\begin{aligned}
& X_{1}+X_{2} \leq 5 \\
& 3 X_{1}+2 X_{2} \leq 12 \\
& \quad X_{1}, X_{2} \geq 0
\end{aligned}
$$

3. Solve the following Transportation Problem
(Analyze) (15 marks)
Destination

| | | A | | B | C | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Supply

4. Solve the following assignment problem.
(Analyze) (15 marks)

Jobs		Machines			
		1	2	3	4
	A	18	24	28	32
	B	8	13	17	19
	C	10	15	19	22

DEPARTMENT OF MECHANICAL ENGINEERING 15UME504 - OPERATIONS RESEARCH

C
 Last Date of Submission: 01.10.2020

1. A firm manufactures two types of products $A \& B$, and sells them at a unit profit of Rs. 2 on A and Rs. 3 on B. Each product is processed on two machines G \& H. One unit of the type A requires 1 min . of processing time on G and 2 min on H . One unit of type B requires 1 min of processing time on each of $\mathrm{G} \& \mathrm{H}$. The machine G is available for not more than 6 h and 40 mins, while H is available for not more than 10 hours during any day. Formulate the LPP to maximize profit.
(Apply) (5 marks)
2. Use Graphical method to solve the following LP problem to
(Analyze) (15 marks)
Maximize $\mathrm{Z}=4 \mathrm{X}_{1}+3 \mathrm{X}_{2}$
Subject to

$$
\begin{aligned}
& 2 X_{1}+X_{2} \leq 1000 \\
& X_{1}+X_{2} \leq 800 \\
& X_{1} \leq 400 \\
& X_{2} \leq 700 \\
& X_{1}, X_{2} \geq 0
\end{aligned}
$$

3. Find the basic feasible solution for the following transportation problem using
i) North-West Corner Rule
ii) Least Cost Method
iii) Vogel's Approximation method.

| | To | | | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| From | 3 1 7 4 250
 2 6 5 9 350
 8 3 3 2
 400
 Demand 200 300 350 150 | | | |

And compare with optimal solution result by Modi method
(Analyze) (15 marks)
4. The processing times in hours for the jobs when allocated to the different machines are indicated below. Assign the machines for the jobs so that the total processing time is minimum.

Jobs		Machines				
		I	II	III	IV	V
	1	9	22	58	11	19
	2	43	78	72	50	63
	3	41	28	91	37	45
	4	74	42	27	49	39
	5	36	11	57	22	25

DEPARTMENT OF MECHANICAL ENGINEERING 15UME504 - OPERATIONS RESEARCH
 PERIODICAL TEST - 1

1. Consider a small manufacturer making two products of A and B. Two resources R1 and R2 are required to make these products. Each unit of product A requires 1 unit of R1 and 3 units of R2. Each unit of product B requires 1 unit of R1 and 2 units of R2. The manufacturer has 5 units of R1 and 12 units of R2 available. The manufacturer also makes a profit of Rs. 6 per unit of product A sold and Rs. 5 per unit of product B sold. Formulate as LPP to maximize profit
(Apply) (5 marks)
2. Use Simplex method to solve the following LP problem to
(Analyze) (15 marks)
Maximize $\mathrm{Z}=3 \mathrm{X}_{1}+2 \mathrm{X}_{2}+5 \mathrm{X}_{3}$
Subject to $\quad \mathrm{X}_{1}+4 \mathrm{X}_{2} \leq 420 \quad 3 \mathrm{X}_{1}+2 \mathrm{X}_{3} \leq 460 \quad \mathrm{X}_{1}+2 \mathrm{X}_{2}+\mathrm{X}_{3} \leq 430$

$$
\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \geq 0
$$

3. Solve the following Transportation Problem starting with the initial solution obtained by VAM and find the Optimal using MODI method.
(Analyze) ($\mathbf{1 5}$ marks)

		Destination				
Origin	D_{1}	D_{2}	D_{3}	D_{4}	Supply	
		O_{1}	2	2	2	1
	O_{2}	10	8	5	4	3
	O_{3}	7	6	6	8	7
	equired	4	3	4	4	15

4. Solve the following Travelling Salesman Problem.
(Analyze) (15 marks)

From City		To City			
		A	B	C	D
	A	--	80	70	50
	B	20	--	60	40
	C	30	100	--	30
	D	70	50	40	--

